Zallen lab

Tomer et al. (2012) Nat. Methods
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Raw movies
(ventral view of Drosophila germ-band,
with Lucy Butler & Benedicte Sanson)

Cephalic furrow
Mesoderm invagination

Analyse curved plane through
Adherens Junctions

Cell tracking & analysis

Blanchard et al. (2009) Nat. Methods
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Analysis of Epithelial Morphogenesis

1 Static measures
Cell shapes
Expected cell shapes
Cell-cell interface shapes
Number of neighbours

2 Dynamic measures
Cell-cell interface dynamics
Small domain deformations
Impact of cell division
Measuring fluctuations

3 Fluorescence intensity

* Quantification of sub-cellular fluorescence intensity
* Medial dynamics

 Polarity of junctional proteins

4 Towards 3D
» Epithelial tilt & curvature
» Combining tracking of apical & basal layers

5 Time & space coordinate systems

« Embryonic or radial axes

« Synchronising time between WT embryos, and with mutants
» Compartments and boundaries
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Cell-cell interfaces




Cell-cell interface geometric stress
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Analysis of Epithelial Morphogenesis

1 Static measures

Cell shapes

Expected cell shapes

Cell centroid arrangement
Cell-cell interface shapes
Number of neighbours

2 Dynamic measures
Cell-cell interface dynamics
Small domain deformations
Impact of cell division
Measuring fluctuations

3 Fluorescence intensity

* Quantification of sub-cellular fluorescence intensity
* Medial dynamics

 Polarity of junctional proteins

4 Towards 3D
 Epithelial tilt & curvature
« Combining tracking of apical & basal layers

5 Time & space coordinate systems

« Embryonic or radial axes

» Synchronising time between WT embryos, and with mutants
» Compartments and boundaries
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Cell-cell interface dynamics

Context of T1 process
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Interface
length (um)
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Continuous sliding behaviour

‘Continuous’ vs ‘discrete’ intercalation

‘Continuous’ intercalation

= | strainrate

S~
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ke "\ Rate of
S 2 topological
] change
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0 10 20 30 40 50
Time (mins after start of axis ext.)

Blanchard (2017) Phil. Trans. R. Soc. B
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Small domain deformation rates

Centroid

\ trajectories

Domain translation

Velocity field

Residuals
of fit

Tissue velocity
gradient tensor

6ua_u

aay
v 9y
dx dy

L/

Blanchard et al., (2009) Nat. Methods
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Tissue rotation
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strain rate
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‘Discrete’ strain rate methods

Using links and triangles to calculate Vv

Using links Texture
/\\\/\ . tensor F ~ Uy ) /\\/\
y \ /\\/ > @ —

—

Ab/\
Cell centroid \ /\\/N
links v
vV

e ¥
Nares

KX

N"
T1 process (rearrangement) T2 process (cell loss/gain) Cell division

® Cell centroid =—Cell membrane ===Cellsin contact Losing contact === Gained contact

Guirao et al, (2015) elLife; Etournay et al., (2015,2016) eLife; Blanchard (2017) Phil. Trans. R. Soc. B
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Cephalic furrow
Mesoderm invagination

Analyse curved plane through
Adherens |unctions

Kinematic maps

Extension rate
= 0.04 (pp/min)

Convergence rate
= -0.04 (pp/min)

Cell intercalation
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Butler et al. (2009) Nat. Cell Biol.




Net strain rates for dividing cell

— prophase —+— anaphase —+— cytokinesis —+— relaxation —  Cumulative

Cell Shape . : . E
strain rate e e + ..... + . .......... + = e + .....
tensor / I

eCellShape

Intercalation : =
strain rate e . .......... + . .......... + + 4+ e . .......... = e
tensor | |:

€Intercalation

Strain rate: <=9 expansion p===qcontraction
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Local impact of cell division

Domain absorbs cell division Domain reflects cell divisic

Post-mitosis Post-mitosis

+ Surroundings squash dividing cell (surroundings stiffer than mitosis)
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Density of Medial Myosin (gs)
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Drosophila embryonic morphogenesis

Gastrulation 200 / [ Dorsal closure
: “ ventrolateral view

Germ-band| MPf
extension

400

Germ-band| 500’5

retraction — e e °; ;Q. T;';x‘%.‘lu
T AN SS A Ssak fel )
600"
Dorsall 700 e
closure 3

dorsolateral view

Tomer et al. (2012) Nat. Methods
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Amnioserosa dorsal closure

Dorsal view of
amnioserosa

stage |3

Anterior

% No cell rearrangement
% Pulsatile Myosin-Il is apico-medial, not junctional

Gorfinkiel et al., (2009) Development; Blanchard et al., (2010) Development
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Rate of tissue contraction
(% area change / min)

Drosophila dorsal closure trends

0.33

of cell elongation
o

Fluctuation frequency
(cycles / min)
Orientation & strength

0.25

AP

| I | I I
0 45 90 135 -45 0 45 90

Time (minutes from the start of DC slow phase) Time (minutes from the start of DC slow phase)

Blanchard & Adams (201 ) COGD; Gorfinkiel, Schamberg & Blanchard (201 I) Genesis
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Extract cell contractile stress & strain rates

O+ TRO = TKCm + TRKE

Minima trends

Time serfes and trand

Mean trends

Apical

Apical

~O — . 3
E™ _ ]
30 @ E E
(%) a E
=4 Ay c E
S0 0, — Areac g 1 ]
= ‘ ¢ ‘ ‘ ¢ ’ -C, - 1. - - k3 3
3 Early Slow‘ ‘Fast Areal, S ;
SN " M Y N e T P
Time (minutes) % " Tlm‘e seres and tv'end -
S Cell 2 , D ]
S Tot.Med.Myo..q > b
2 MYo,, = ; S = 3
go “t Tot.Med.Myo.0, 8 ;
37 = :
o
—_— )
-40 -20 0 20 40 60 80 Trends retrospectlve e
Ly Time (minutes)

Rates calculated over |0sec time window



Neighbour accommodation: patterns at intermediate scale

=== -2 (M Min~ contraction
== 2 M Min* expansion




Analysis of Epithelial Morphogenesis

1 Static measures

Cell shapes

Expected cell shapes

Cell centroid arrangement
Cell-cell interface shapes
Number of neighbours

2 Dynamic measures
Cell-cell interface dynamics
Small domain deformations
Impact of cell division
Measuring fluctuations

3 Fluorescence intensity
* Quantification of sub-cellular fluorescence intensity

* Medial dynamics
 Polarity of junctional proteins

4 Towards 3D
 Epithelial tilt & curvature
« Combining tracking of apical & basal layers

5 Time & space coordinate systems

« Embryonic or radial axes

» Synchronising time between WT embryos, and with mutants
» Compartments and boundaries
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Cell-cell interface Myosin |l fluorescence
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Cell fluorescence quantification




Fluorescence (Planar-)Polarity

R AR DAL Vot U ,
Myosin staining during early germ-band
extension. Cells tracked in Cadherin-GFP
channel (not shown).

Mean fluorescence has been calculated
across cell apices and for each cell-cell

interface. Mean intensity for each part of
each cell is drawn here.

The relative fluorescence intensity of each of
a cell’s interfaces is compared. Any polarity in
the pattern is captured and drawn here as a
cross, with red in the orientation of least
intensity.
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Apical cell myosin polarity

Bidirectional polarity (8.5 mins)




. Myosin polarity patterns across AP axis
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Bidirectional polarity
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Single embryos. To find stereotypical behaviour want standardised AP axis coordinate
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Actomyosin drives apical cell contractilit
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Myosin motors
Actin filaments




Myosin |l fluctuations
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Actin and myosin dynamics in cell fluctuations
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Protein Fluorescence Intensity

Cortical ring fluorescence intensity

Kymograph




Analysis of Epithelial Morphogenesis

1 Static measures

Cell shapes

Expected cell shapes

Cell centroid arrangement
Cell-cell interface shapes
Number of neighbours

2 Dynamic measures
Cell-cell interface dynamics
Small domain deformations
Impact of cell division
Measuring fluctuations

3 Fluorescence intensity

* Quantification of sub-cellular fluorescence intensity
* Medial dynamics

 Polarity of junctional proteins

4 Towards 3D
 Epithelial tilt & curvature
« Combining tracking of apical & basal layers

5 Time & space coordinate systems

« Embryonic or radial axes

» Synchronising time between WT embryos, and with mutants
» Compartments and boundaries
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3D and in toto tracking & modelling

Claire Lye
Grenoble
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Jocelyn Etienne
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Analysis on quasi-2D surfaces




2-layer tracking of salivary placode

BR



Analysis of Epithelial Morphogenesis

1 Static measures

Cell shapes

Expected cell shapes

Cell centroid arrangement
Cell-cell interface shapes
Number of neighbours

2 Dynamic measures
Cell-cell interface dynamics
Small domain deformations
Impact of cell division
Measuring fluctuations

3 Fluorescence intensity

* Quantification of sub-cellular fluorescence intensity
* Medial dynamics

 Polarity of junctional proteins

4 Towards 3D
 Epithelial tilt & curvature
« Combining tracking of apical & basal layers

5 Time & space coordinate systems
« Embryonic or radial axes

» Synchronising time between WT embryos, and with mutants t _
» Compartments and boundaries \
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Drosophila embryonic morphogenesis

Gastrulation 200 Germ-band extension

Germ-band| MPf
extension

ventrolateral view

bt -
At p FOKS
C ol B i A TN

Germ-band
retraction

Dorsal

closure
dorsolateral view

Tomer et al., (2012) Nat. Methods
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Y um

Moving embryonic axes

Midlines vs t (red->blue in time)
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DV distance from mid-line (um)

abs(comoving DV)

50
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0

Fixed and comoving coordinate systems

Fixed coordinate system,

10 20 30 40

Time (mins from start GBE)
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N .
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Comoving coordinate system, ‘painted’ on at 5 minutes
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Posterior mid-gut pulls the germ-band

Dorsal folds Dorsal folds
endoderm [—l—|
Stage 6 | | invagination
atf otf Stage 8 atf  ptf GBE

meso

cf + 5 1 1 t t 1
mesoderm invagination

Butler et al., (2009) Nat. Cell Biol.; Lye et al., (2015) PLOS Biology;
see also Collinet et al., (2015) Nat. Cell Biol.
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Assigning within-parasegment coordinate system
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0 025

v ‘c}?r

38.5 mins
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4 mins

Define cell parasegment membership by location of PSBs at ends of movies

Back-track PSBs to starts of movies




Time after GBE onset (mins)

Within-parasegment patterns

Bidirectional ee Unidirectional eb
polarity e e polarity eb
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WikiTracks

e =Y L e
Page Disc Read Edit View history ~ (Go) (searcn ) Page Discussion Read Edit View history Go) (Search_
WikiTracks Depth from shell
Redire n Main Page)
AutoTracker > Pretracking > Detrend Brigntness > AutoTracker > Tracking > Membrane Tracking > TrackAnaysis > Caculating parameters > Depth from she!
Pretracking > Detrend Brightness > AutoTracker > Tracking > Membrane Tracking > TrackAnalysis > Caiculating parameters > Depth from shell > WikTracks
Navigation Contents [hide] Navigation How to calculate 'Depth from shell' parameter [edit)
tents [hide]
WikiTracks 1 Cell Tracking and Analysis Protocols WikiTracks Go to Processes' page:
Nt kg poge 1 prarene BOWSTDI00 4 et rocesses Dot o sha
i i
: 'g pag 1.2 Discussion g pagl 2. Make sure no rules apply
Autotracking page 1.3 Help with editing the wiki Autotracking page
q 3. Calculate
Tracks analysis page Tracks analysis page
Dovnloads Cell Tracking and Analysis Protocols ledit] Downloads Output fedi]
Recent changes Recent changes
Categaylndex Manual and automated cell tracking is run in 'IDL' (Interactive Data Language, [1] &). Category index « Calculates a parameter which records for each cell at each time point the depth of its centroid from the outer surface of the embryo, as defined by the
. . . - ' outer ‘blanket' of the embryo.
Individual menus Analysis of cell tracks is done in IDL' and the 'R statistical package (2] &). RIS « Depth is calculated in um from the embryo surface, in the positive direction towards the centre of the embryo (negative values are outside the embryo).
* Running IDL « The orientation along which the depth is calculated is the orientation defined by the line between the cell centroid and the center of the embryo.
Tracks & analysis menus " Tracks & analysis menus X o
o Paths and Locations of Files 4 This is useful as a 'rule’ to screen out surface or deep cells, that occupy, for example, a non-epithelial location.
+ Saving QuickTime movies Plot->hist ith P | ‘depth from shell tand why the distribution i the itis c
Toolbox + Movie Formats Toolbox lot->histogram with Parameter selected as 'depth from shell' and understand why the distribution is shaped the way it is for your data.
What links here * Movie Deconvolution What links here e
Related changes o R statistical package Related changes
Upload file « File Ownership Upload file
Special pages Programs [edit] Special pages 3000
Printable version Printable version
Permanent link 1. browser allows viewing and screening of movies. Also used to set up various essential movie settings Permanent link
2. tracker allows manual tracking of cell locations and shapes in 2 and 3D 2000
Help 3. otracks allows automated cell tracking and analysis of manual and automated tracking data Help z
MediaWiki Users Guide  Discussion [edit] MediaWiki User's Guide -
MediaWiki Settings MediaWiki Settings 1000
MediWiki FAQs Discussion and problems page MediWiki FAQs
0
1, . 20 0 20 40
Xample pages rrom IKI lracks web-site depin from shel J
Example depth from shel histogram for 3D germband & First frame of same movie, colour-coded by depth from shel, showing good &
tracking cels in green, bad surface cell shards in red (0 um), and aberrant deep cells in

dlue (20 pm)

wiki-based resource for sharing tracking and analysis methods
* provides downloads of manual and automated 2- and 3D tracking programs
e downloads of analysis programs
e users can add functionality by writing and adding their own analysis modules
e documentation for all programs
* all users can improve the wiki documentation and contribute to discussions
e currently used and tested by collaborators, to be rolled out for general use
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